Liquid–Liquid Phase Separation in Crowded Environments
نویسندگان
چکیده
منابع مشابه
Helical tubes in crowded environments.
When placed in a crowded environment, a semiflexible tube is forced to fold so as to make a more compact shape. One compact shape that often arises in nature is the tight helix, especially when the tube thickness is of comparable size to the tube length. In this paper we use an excluded volume effect to model the effects of crowding. This gives us a measure of compactness for configurations of ...
متن کاملPolymer translocation in crowded environments.
We study the effect of the crowded environments on the translocation of a polymer through a pore in a membrane. By systematically treating the entropic penalty due to crowding, we show that the translocation dynamics are significantly altered, leading to novel scaling behaviors of the translocation time. We also observe new and qualitatively different translocation regimes depending upon the ex...
متن کاملPhase transitions in crowded behaviour
In this paper, I want to review theoretical models of two social phenomena: the dynamics of an applauding audience and the collective motion of people in a stadium forming a La Ola wave. In particular, I want to stress how phase transitions occur in these theoretical models and how these transitions emerge macroscopically.
متن کاملQuantifying transport in crowded biochemical environments
Transport of cells and biochemical molecules often takes place in crowded, heterogeneous environments. As such, it is important we understand how to quantify crowded transport phenomena, and the possibilities of extracting transport coefficients from limited observations. We employ a volume-excluding random walk model on a square lattice where different fractions of lattice sites are filled wit...
متن کاملIon specificity of macromolecules in crowded environments.
Macromolecular crowding plays a significant role in the solubility and stability of biomacromolecules. In this work, the thermo-sensitive poly(N-isopropylacrylamide) (PNIPAM) has been employed as a model system to study the specific ion effects on the solubility of macromolecules in crowded environments of dextran and polyethylene glycol (PEG). Our study demonstrates that crowding agents can in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Molecular Sciences
سال: 2020
ISSN: 1422-0067
DOI: 10.3390/ijms21165908